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Abstract

Water bodies on land are critical ecosystems that play an important role in different domains. Changes in
the characteristics of water bodies can influence internal processes, potentially causing long-term negative
impacts on ecosystem features and biodiversity. A common indicator of degradation in lakes is
brownification. This research focuses on Colored Dissolved Organic Matter (CDOM), which, at high
concentrations, turns water brown and alters underwater light conditions. This phenomenon significantly
affects ecosystem characteristics and diversity.

To monitor and understand these changes, it is crucial to represent the state of water bodies using a
brownification scale. Previous studies have addressed water body classification through Optical Water
Types (OWT).

This study examines the spatio-temporal dynamics of optical water quality in Estonia’s Lake Võrtsjärv,
emphasizing the key parameter CDOM. It builds upon CDOM-based Optical Water Type classification,
expanding the analysis to a broader spatio-temporal range. Additionally, the study investigates how
CDOM levels vary with factors such as wind speed, temperature, and solar radiation, using data recorded
from stations near Lake Võrtsjärv.

Keywords: Water bodies, Colored Dissolved Organic Matter (CDOM), Optical Water Types (OWT),
Spatio-temporal dynamics, brownification.
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1 Introduction

Water bodies on land are critical ecosystems that play an important role in different domains. These
natural elements (i.e., rivers, lakes, and wetlands) provide drinking water, support biodiversity, and even
help to mitigate natural disasters such as floods and droughts (Grigg, 2011). Despite their significance,
these ecosystems are under threat globally due to shrinking and pollution caused by global warming and
anthropogenic activities.

A common indicator of degradation in lakes is brownification. This process is caused by high
concentration of both organic and non-organic particles. Among the principal agents that contribute to this
problem are high concentrations of Total Suspended Matter (TSM), Chlorophyll-a (Ch-a) and Colored
Dissolved Organic Matter (CDOM) (Dubois, 2011). Although this is a natural process, anthropogenic
activities such as agriculture, mining, deforestation, increase in urbanization, and others, intensify this
phenomenon.

This project focuses on CDOM, a key water quality component. CDOM consists of organic molecules
derived from the remains of plants and animals altered through chemical reactions. Both human activities,
such as agriculture and deforestation, and natural processes, like soil runoff and plant decay, can increase
CDOM concentrations. High levels of CDOM lead to water brownification, a phenomenon that alters
light conditions, affects aquatic habitats, and impacts ecosystem diversity. CDOM particles absorb
incoming light, reducing the light available to aquatic organisms and negatively affecting their behavior
and habitat conditions (Madhav et al., 2023).

To assess water quality, it is essential to represent the state of water bodies using a brownification scale.
Traditional methods involve collecting in-situ measurements of chemical and optical properties like
CDOM. While precise, this approach faces challenges in spatial and temporal coverage, cost, and
accessibility. Remote sensing offers a practical alternative, allowing for large-scale monitoring of water
bodies.

Remote sensing involves using satellite-based sensors, such as those on the Landsat and Sentinel
missions, to gather data on water quality. By measuring light reflectance from water surfaces, the status of
brownification can be determined. The reflectance values are influenced by optically active substances'
absorption and scattering properties, including CDOM, chlorophyll-A, and total suspended solids (TSS)
(Arst, 2003). Each water body exhibits unique combinations of these substances, and analyzing
reflectance across multiple spectral bands allows for accurate classification of Optical Water Types
(OWTs).

This project aims to understand water quality and its variability over time. A key objective is to explore
the application of remote sensing and data science techniques in water quality studies. This includes
leveraging machine learning (ML) methods, focusing on AutoML, to simplify and enhance classification
processes. The project involves acquiring data from sources like ESTHUB, preprocessing and
normalizing the data for ML analysis, and classifying satellite data to derive meaningful insights over a
sizable temporal range. The project aims to develop a comprehensive approach for monitoring and
analyzing water quality by integrating advanced remote sensing and ML techniques.



2 Background

The concept of water type classification was first introduced by Nils Jerlov in 1951, who categorized
ocean waters on a clear-to-turbid scale using the downwelling diffuse attenuation coefficient (Jerlov,
2014). By 1976, ten water types were defined within this framework. Morel and Prieur (1977) further
developed water classification based on reflectance measurements, identifying two cases (Das, 2023):
Case 1, dominated by phytoplankton, and Case 2, characterized by inorganic particles, using reflectance
data and optical coefficients.

Reinart et al. (2003) applied OWT classification to lakes and coastal waters in Estonia and Finland,
focusing on Case 2 water types. Using K-Means clustering, they defined five optical classes: clear,
moderate, turbid, very turbid, and brown. Similarly, Moore et al. (2009) expanded the classification to
eight water types based directly on radiance measurements.

Spyrakos et al. (2018) identified 13 spectrally distinct clusters for inland waters and nine for marine
environments, using clustering algorithms and functional analysis. Uudeberg et al. (2019) classified
boreal lakes and coastal areas into five OWT classes using mathematical clustering rules. This work was
extended in 2020 to map optical water quality parameters to empirical algorithms, addressing the
inefficiencies of traditional water monitoring.

In Brazil, da Silva et al. (2020) used in-situ reflectance data and K-Means clustering for OWT assessment.
Their findings were later applied to Sentinel-2 MSI data (2021), employing Support Vector Machines for
classification with novelty detection techniques (da Silva et al., 2021).

Recent advances, such as those by Ševtšenko (2024), utilized a series of machine learning (ML)
algorithms for supervised OWT classification. This approach leveraged AutoML techniques to streamline
the classification process, linking OWT categories to CDOM-based classes through robust evaluation
methods.



3 Study Area

Lake Võrtsjärv, located in southern Estonia, is the second-largest lake in the country by surface area and
plays a vital role in the region's ecosystem and local livelihoods. It is a shallow, eutrophic freshwater lake
with an average depth of approximately 2.8 meters and a maximum depth of about 6 meters. The lake
covers an area of around 270 square kilometers, making it one of the largest inland water bodies in the
Baltic region (Moora et al., 2002).

Lake Võrtsjärv is fed by multiple small rivers and drains into the Emajõgi River, which eventually flows
into Lake Peipsi. The lake is a crucial habitat for various aquatic species, including fish, aquatic plants,
and migratory birds. Its surrounding wetlands and reed beds provide nesting grounds and biodiversity
support (Moora et al., 2002).

The lake experiences significant seasonal variability due to its shallow depth and geographic location.
During the winter months, it typically freezes, while in warmer months (April to October), it becomes an
active site for ecological processes such as photosynthesis and nutrient cycling (Pettersson et al., 2010).
This period was chosen for the study as it allows for consistent monitoring and analysis of water quality.

Lake Võrtsjärv is characterized by its high concentration of dissolved organic matter, suspended
sediments, and nutrient load, largely influenced by agricultural activities and natural processes in its
catchment area (Moora et al., 2002). These factors make it a representative study site for exploring the
dynamics of Optical Water Types (OWTs) and Colored Dissolved Organic Matter (CDOM) classification.
Understanding the lake's water quality is critical for ecological conservation, sustainable management,
and mitigating the impacts of anthropogenic activities.

Figure 1 Study Area



4 Dataset

4.1 Sentinel-2 Imagery

The dataset utilized in this study comprised Sentinel-2 (S2) satellite imagery sourced from ESTHub
(Estonian Land Board, n.d.). The images were processed at the Top-of-Atmosphere (TOA) level and
corrected using the Polymer L2 MSI v4.16.1 processor, specifically designed for scientific use. To ensure
high-quality reflectance data, ancillary data from NCEP (National Centers for Environmental Prediction)
were integrated to support the atmospheric correction process.

The study's Area of Interest (AOI) was Lake Võrtsjärv in Estonia. Data were collected from 2016 to 2023,
focusing on April to October. This time frame was selected as the lake remains unfrozen during these
months, facilitating the observation of water quality parameters.

Spectral data from Sentinel-2 bands 1 through 8A were included in the analysis. These bands were
normalized to ensure uniformity and compatibility with machine learning algorithms.

Figure 2. Normalized Features of Sentinel-2 Imagery

This dataset forms the foundation for studying the spatio-temporal dynamics of water quality in Lake
Võrtsjärv, emphasizing analyzing Optical Water Types (OWTs) and Colored Dissolved Organic Matter
(CDOM).

4.2 Meteorological Data

In this study, meteorological data from weather stations located at Tartu-Tõravere, Tiirikoja, and Viljandi
was incorporated to further analyze the environmental factors influencing the optical water quality of



Lake Võrtsjärv. The dataset included hourly measurements of variables such as radiation, air pressure,
precipitation, humidity, temperature, and wind parameters. These measurements were analyzed and
processed to derive monthly averages, providing a comprehensive temporal perspective.

The integration of weather station data allowed for a deeper exploration of the relationships between
meteorological conditions and the lake's optical properties. By combining this data with satellite
observations, this study investigated how factors like temperature fluctuations, wind patterns, and
radiation levels impact the dynamics of Colored Dissolved Organic Matter (CDOM) and other water
quality parameters over time. This approach provides a more holistic understanding of the interactions
between atmospheric conditions and the lake's ecosystem.



5 Methods

5.1 Pixel-wise Classification into CDOM-OWT Classes

After preprocessing the data, the study shifted to applying machine learning algorithms for classifying
Optical Water Types (OWTs) and analyzing key water quality parameters, such as Colored Dissolved
Organic Matter (CDOM). The classification process was influenced by the methodology outlined in
Ševtšenko (2024) on CDOM-based Optical Water Type classification and adapted to suit the specific
characteristics of Lake Võrtsjärv. The normalized reflectance values from Sentinel-2 bands 1 through 8A
formed the input for this phase, enabling the identification of optical water clusters and their variations
over time.

The classification was performed using a K-Means clustering algorithm, optimized through the
AutoGluon framework, to divide the data into eight distinct clusters. These clusters corresponded to
unique Optical Water Types, capturing variations in optical properties across Lake Võrtsjärv. The eight
clusters were selected based on prior studies and refined through evaluation metrics to ensure meaningful
classification. A Weighted Ensemble (L3) classifier further enhanced accuracy and robustness. This
approach combined multiple models to improve the reliability of predictions, ensuring accurate separation
of water types across diverse spatial and temporal datasets.

The performance of the clustering algorithm was evaluated using several metrics. The silhouette score,
which measures the separation between clusters, was 0.308, indicating moderate differentiation among the
identified clusters. Balanced accuracy was high, with values of 0.979 for the training split and 0.963 for
the test split, demonstrating the model’s reliability across different data subsets. The Macro F1-Score and
Micro F1-Score were also notable, at 0.970 and 0.971, respectively, underscoring the precision and recall
of the clustering process.

To ensure the robustness of the classification, penalties were incorporated to assess errors in the predicted
order of key water quality parameters, including CDOM, chlorophyll-a (Chla), total suspended solids
(TSS), and Secchi depth. The CDOM order penalty was 0.000, indicating perfect alignment with expected
classifications, while the penalties for Chla and TSS were 0.125 each, reflecting minimal deviations.
Similarly, the Secchi depth penalty was 0.000, validating the model's accuracy.



Figure 3. Methodology Diagram for Classification

The classification results were applied to generate time-series data and spatial maps of Optical Water
Types and CDOM concentrations across Lake Võrtsjärv. This allowed for a detailed analysis of water
quality trends and seasonal dynamics between 2016 and 2023. By leveraging unsupervised clustering with
the K-Means algorithm and integrating AutoML tools, the methodology provided a robust framework for
analyzing large-scale water quality datasets. The approach demonstrated the effectiveness of combining
data-driven machine learning techniques with domain knowledge, offering insights into water quality
parameters' spatial and temporal behavior in large freshwater ecosystems. By adapting Fyodor
Ševtšenko’s framework, the study successfully developed a scalable method for monitoring and
understanding water quality in Lake Võrtsjärv.

5.2 Temporal Analysis of CDOM Concentration and Meteorological Data

The analysis of CDOM concentrations and meteorological data was conducted temporally, focusing on
the percentage of CDOM concentration across the lake. To comprehensively understand, meteorological
data was collected from three weather stations at Tartu-Tõravere, Tiirikoja, and Viljandi, strategically
positioned around Lake Võrtsjärv. These stations were selected to capture the spatial variability of
atmospheric conditions influencing different parts of the lake.

Using the data from these stations, comparisons were made between temporal trends in meteorological
variables such as temperature, wind speed, radiation, and precipitation, and the average CDOM
concentrations across the lake. The analysis was carried out in Jupyter Notebook, where visualizations,
comparison matrices, and correlation matrices were created to explore and quantify these relationships.



6 Results

Figure 4. CDOM Concentrations Every Month 2016 - 2023

Figure 4 presents line graphs showing the average monthly percentage of CDOM (Chromophoric
Dissolved Organic Matter) in Lake Võrtsjärv across multiple years. Each year’s curve generally exhibits a
characteristic “U” shape, with relatively moderate CDOM values at the start of the year, followed by a
notable decline mid-year, and then a pronounced rise toward the year’s end. While the specific
magnitudes and timing of these fluctuations vary somewhat from year to year, the recurring pattern
suggests that overarching seasonal processes, such as changes in precipitation regimes, temperature
variations, and the seasonal input of organic matter, consistently influence the temporal distribution of
CDOM in this lake system.



Figure 5. Average monthly percentage of CDOM Concentration 2016 - 2023

A noticeable feature in the data is that certain months and years show particularly high CDOM values.
For instance, some years exhibit peaks in CDOM during the late summer or early autumn months, which
may coincide with periods of increased runoff from surrounding lands, enhanced decomposition of
organic materials in the water, or changes in precipitation and temperature that influence the input and
breakdown of organic matter. In contrast, other months typically present lower CDOM levels, suggesting
times of the year when environmental conditions are not as conducive to the buildup of dissolved organic
matter or when photodegradation and microbial activity may reduce CDOM concentrations.

Over time, these monthly patterns can vary from year to year. The differences might be driven by changes
in weather patterns, land use, or other environmental factors, such as shifts in local vegetation or
hydrology. For example, a particularly wet year could increase runoff and lead to higher CDOM levels
during certain months, while a dry or sunny period might promote more photodegradation and lower
CDOM readings.



Figure 6. Average CDOM Composition Over Years

Figure 5 illustrates the relative composition of various CDOM classes over the period from 2016 to 2023,
presenting the average monthly percentage contributions of each class. The stacked bar chart highlights
that while multiple classes are present, the overall composition is dominated by two or three major
CDOM classes. Over time, these dominant classes remain fairly stable, with only subtle variations in their
proportional contributions. Minor classes, although present, persist at comparatively low percentages and
do not exhibit significant long-term trends. This consistency in the proportional makeup of CDOM
suggests that the underlying environmental conditions and biogeochemical processes influencing the
lake’s organic matter inputs and transformations have remained relatively steady throughout the observed
timeframe.



Figure 7. Mean CDOM Over Yearsimplies

The charts Figure 6 and 7 imply that, on an annual basis, CDOM levels have remained broadly
consistent from 2016 through 2023. While the data do not point to dramatic long-term shifts, the
slight annual differences may still offer insights into how local climate conditions, hydrology, or
watershed management practices influence the presence and concentration of dissolved organic
matter in the environment.



Figure 8. Correlation matrices show the statistical relationships between Total CDOM (Chromophoric Dissolved Organic Matter)
concentrations and Meteorological Data from Different Stations

Monthly solar energy, measured in watts per square meter (W/m²), represents the average solar energy
received during the month. The average station air pressure, expressed in hectopascals (hPa), indicates the
local atmospheric pressure recorded at the station. Monthly precipitation, measured in millimeters (mm),
reflects the monthly rainfall. The average air temperature, calculated in degrees Celsius (°C), provides the
mean temperature for the same period. Similarly, the average wind direction, expressed in degrees (°),
highlights the predominant direction of the wind, while the average wind speed, measured in meters per
second (m/s), captures the mean wind velocity. Additionally, the total concentration of colored dissolved
organic matter (CDOM) in the water offers insights into water quality. These metrics allow for analyzing
general patterns and provide valuable interpretations of environmental conditions.



6.1 Temperature and CDOM:

At multiple stations, there tends to be a negative correlation between Total CDOM and Average Air
Temperature. This might mean that during warmer months, CDOM levels are generally lower. One
possible explanation is that higher solar irradiation and temperature can lead to increased
photodegradation (CDOM breaks down under strong sunlight) or differences in seasonal runoff patterns
that affect when organic matter enters the water.

6.2 Solar Energy and CDOM:

Often, Total CDOM shows a negative correlation with Monthly Solar Energy. Higher solar energy could
accelerate the breakdown of organic compounds that make up CDOM or coincide with conditions when
less terrestrial runoff (a primary CDOM source) occurs. In other words, sunnier months might lead to
more photobleaching (light-driven degradation) of CDOM.

6.3 Precipitation and CDOM:

Some stations show positive correlations between Monthly Precipitation and Total CDOM. Rainfall can
wash soil organic matter and leaf litter into streams, rivers, and lakes, increasing the concentration of
dissolved organic matter. Thus, more rain often means more CDOM from terrestrial sources.

6.4 Wind Speed and CDOM:

The relationship with wind speed can vary by station. In some cases, higher wind speeds correlate
positively with CDOM—potentially due to increased mixing of water layers and resuspension of
sediment-bound organic matter. In other stations, higher wind speeds might coincide with periods or
seasons when CDOM input is lower, resulting in negative correlations. Local geography, land use, and
water body characteristics can cause these differences.

6.5 Differences between stations:

Each station has a unique pattern. For example, one station might have a strong negative correlation
between temperature and CDOM, while another shows a weaker relationship. These differences highlight
that the factors influencing CDOM are complex and site-specific.

The correlation matrices indicate that Total CDOM levels in a water body are not static—they respond to
various environmental conditions. Seasonal changes in temperature, sunlight, rainfall, and wind patterns
can influence the production and degradation of CDOM. Understanding these correlations helps
researchers infer potential drivers of CDOM variability and can guide sampling strategies, environmental
management, and water quality modeling in the regions.



7 Discussions

The stable annual patterns in CDOM percentages suggest that, at the scale of multiple years, Lake
Võrtsjärv’s DOM regime may be relatively resilient or in a state of quasi-equilibrium concerning major
environmental shifts. The absence of a pronounced long-term trend could imply that climatic and land-use
drivers have remained relatively consistent in this timeframe or that the lake’s ecological and
biogeochemical processes inherently buffer against substantial year-to-year changes.

Monthly patterns, however, highlight the dynamic interplay of hydrological and ecological processes.
Elevated CDOM percentages in certain months may coincide with increased runoff events, as higher
precipitation can mobilize terrestrial organic matter and deliver it into the lake. The timing of these
pulses, along with seasonal variations in primary productivity, decomposition rates, and photodegradation,
likely shapes the observed seasonal signals. Seasonal variation of hydrological parameters controlled the
lake CDOM levels (Kutser, Li, Toming, & Noges, 2022). For instance, the correlation of warmer months
and higher solar energy with lower CDOM could reflect enhanced photobleaching of organic matter and
greater microbial and photochemical breakdown, thereby reducing CDOM concentrations.

The variability in correlations across different stations suggests that local factors mediate the relationship
between environmental drivers and CDOM. This spatial heterogeneity is expected in an extensive,
complex lake system like Võrtsjärv, where inflows, surrounding terrestrial ecosystems, and internal
mixing processes differ around the lake’s perimeter. Lake volume variation can potentially indicate
variations in lake water color and DOC fluxes (Kutser, Li, Toming, & Noges, 2022). The interplay
between climate-driven factors (e.g., precipitation and temperature) underscores the complexity of
predicting future CDOM trends under changing environmental conditions.



8 Conclusions

This comprehensive examination of CDOM concentrations in Lake Võrtsjärv over an eight-year period
reveals a stable annual baseline punctuated by more pronounced monthly and seasonal variability. The
lack of a clear long-term trend suggests relative stability in the key processes governing CDOM inputs
and breakdown within the lake. Nevertheless, the pronounced seasonal peaks and troughs, along with
their year-to-year variability, highlight the importance of episodic events and local conditions that shape
the lake’s dissolved organic matter dynamics.

These findings have several implications for the management and study of Lake Võrtsjärv. Understanding
that significant year-to-year changes may not be evident at the annual scale, stakeholders and researchers
should pay closer attention to finer temporal resolutions and seasonal and monthly cycles to detect shifts
in water quality and ecosystem function. Identifying the timing and drivers of seasonal peaks could
inform more targeted sampling strategies, remediation efforts, and predictive modeling. Ultimately,
ongoing monitoring and research will be crucial for anticipating how broader environmental changes,
such as altering precipitation regimes or increasing temperatures, may influence Lake Võrtsjärv’s CDOM
dynamics and, by extension, its overall ecological health.
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